Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.196
Filtrar
1.
Zhonghua Yi Xue Za Zhi ; 104(16): 1347-1350, 2024 Apr 23.
Artigo em Chinês | MEDLINE | ID: mdl-38644281

RESUMO

Alport syndrome is one of the most common inherited kidney diseases caused by mutations in the type Ⅳ collagen genes. It has a complex pattern of inheritance and diverse clinical manifestations, and severe cases will rapidly progress to end-stage kidney disease. With the rapid development of genetic testing technology, there is a deeper understanding of the genetic spectrum of Alport syndrome, the effectiveness of clinical therapies, and the prediction of disease prognosis. Therefore, the purpose of the article is to introduce the advances in the diagnosis and treatment of Alport syndrome, aiming to improve the early diagnosis and standardized treatment of this disease.


Assuntos
Colágeno Tipo IV , Mutação , Nefrite Hereditária , Nefrite Hereditária/terapia , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Humanos , Colágeno Tipo IV/genética , Testes Genéticos , Prognóstico , Falência Renal Crônica/terapia , Falência Renal Crônica/genética , Falência Renal Crônica/diagnóstico
2.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561223

RESUMO

Glomerular filtration relies on the type IV collagen (ColIV) network of the glomerular basement membrane, namely, in the triple helical molecules containing the α3, α4, and α5 chains of ColIV. Loss of function mutations in the genes encoding these chains (Col4a3, Col4a4, and Col4a5) is associated with the loss of renal function observed in Alport syndrome (AS). Precise understanding of the cellular basis for the patho-mechanism remains unknown and a specific therapy for this disease does not currently exist. Here, we generated a novel allele for the conditional deletion of Col4a3 in different glomerular cell types in mice. We found that podocytes specifically generate α3 chains in the developing glomerular basement membrane, and that its absence is sufficient to impair glomerular filtration as seen in AS. Next, we show that horizontal gene transfer, enhanced by TGFß1 and using allogenic bone marrow-derived mesenchymal stem cells and induced pluripotent stem cells, rescues Col4a3 expression and revive kidney function in Col4a3-deficient AS mice. Our proof-of-concept study supports that horizontal gene transfer such as cell fusion enables cell-based therapy in Alport syndrome.


Assuntos
Nefrite Hereditária , Podócitos , Camundongos , Animais , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Podócitos/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Membrana Basal Glomerular/metabolismo , Células-Tronco/metabolismo
3.
Arch Iran Med ; 27(1): 8-14, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431955

RESUMO

BACKGROUND: Hereditary nephritis (HN), including Alport syndrome (AS) and thin basement membrane nephropathy (TBMN), is a rare genetic cause of hematuria. A definitive diagnosis requires electron microscopy (EM). Therefore, the clinical characteristics of these conditions are less known. This study aimed to determine the percentage and clinicopathological features of HN in patients from a referral center in Iran. METHODS: We checked kidney biopsy reports from 2007 to 2021 and extracted cases with HN. Fresh specimens of the cases diagnosed in the last two years were stained by immunofluorescence (IF) for collagen type IV alpha chains. EM findings in these cases were re-evaluated and categorized as diffuse glomerular basement membrane (GBM) thinning, definite, and suspicious features of AS. RESULTS: We analyzed 3884 pathology reports of kidney biopsies from 2007 to 2021 and identified 210 patients (5.4%) with HN, with a mean age of 13.78±12.42 years old. Hematuria with proteinuria (53.3%), isolated hematuria (44.2%), and proteinuria with hematuria and increased creatinine (2.5%) were found in these patients. The re-evaluation of EM findings revealed GBM thinning, definite, and suspicious findings of AS in 37.5%, 43.8%, and 18.8% cases, respectively. The most common diagnosis in 32 cases after the IF study was X-linked AS (71.9%), and 6.2% of cases were autosomal recessive AS. TBMN and autosomal dominant AS remained the differential diagnoses in 21.9%. CONCLUSION: It was found that EM is helpful for the primary diagnosis of patients with definite AS. Immunostaining improves the diagnostic sensitivity for the differentiation of those with suspicious EM findings and determines the inheritance pattern. However, a multidisciplinary approach for a subset of cases is required for the best diagnosis and management.


Assuntos
Nefrite Hereditária , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Hematúria/etiologia , Irã (Geográfico)/epidemiologia , Proteinúria , Encaminhamento e Consulta , Biópsia , Rim
4.
Mol Genet Genomic Med ; 12(3): e2406, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433557

RESUMO

BACKGROUND: Alport syndrome (AS) is a genetically heterogeneous disorder resulting from mutations in the collagen IV genes COL4A3, COL4A4, and COL4A5. The genetic diagnosis of AS is very important to make precise diagnosis and achieve optimal outcomes. METHODS: In this study, 16 Chinese families with suspected AS were recruited after pedigree analysis, and the clinical presentations were analyzed by a nephrologist. The genetic diagnosis was performed by whole-exome sequencing (WES) and the disease-causing variants were confirmed by Sanger sequencing. RESULTS: The cohort of probands included seven men and nine women, with a mean age of 19.9 years. Pathological analysis showed slight-to-moderate mesangial proliferation, and thin basement membrane was the main findings. Pathogenic variants were revealed by WES in each family, and the co-segregation with renal presentation was confirmed by PCR. In addition, RT-PCR analysis showed that the intronic variant led to aberrant splicing. CONCLUSION: Our findings expand the spectrum of AS gene variation, which will inform genetic diagnosis and add to the theoretical basis for the prevention of AS.


Assuntos
Nefrite Hereditária , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Povo Asiático/genética , China , Colágeno Tipo IV/genética , Rim , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética
5.
Curr Opin Nephrol Hypertens ; 33(3): 283-290, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477333

RESUMO

PURPOSE OF REVIEW: With the latest classification, variants in three collagen IV genes, COL4A3 , COL4A4 , and COL4A5 , represent the most prevalent genetic kidney disease in humans, exhibiting diverse, complex, and inconsistent clinical manifestations. This review breaks down the disease spectrum and genotype-phenotype correlations of kidney diseases linked to genetic variants in these genes and distinguishes "classic" Alport syndrome (AS) from the less severe nonsyndromic genetically related nephropathies that we suggest be called "Alport kidney diseases". RECENT FINDINGS: Several research studies have focused on the genotype-phenotype correlation under the latest classification scheme of AS. The historic diagnoses of "benign familial hematuria" and "thin basement membrane nephropathy" linked to heterozygous variants in COL4A3 or COL4A4 are suggested to be obsolete, but instead classified as autosomal AS by recent expert consensus due to a significant risk of disease progression. SUMMARY: The concept of Alport kidney disease extends beyond classic AS. Patients carrying pathogenic variants in any one of the COL4A3/A4/A5 genes can have variable phenotypes ranging from completely normal/clinically unrecognizable, hematuria without or with proteinuria, or progression to chronic kidney disease and kidney failure, depending on sex, genotype, and interplays of other genetic as well as environmental factors.


Assuntos
Nefrite Hereditária , Humanos , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Hematúria/genética , Rim/patologia , Colágeno Tipo IV/genética , Mutação
6.
Medicine (Baltimore) ; 103(10): e37442, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457557

RESUMO

BACKGROUND: Genetic factors contribute to chronic kidney disease (CKD) and end-stage renal disease (ESRD). Advances in genetic testing have enabled the identification of hereditary kidney diseases, including those caused by LMX1B mutations. LMX1B mutations can lead to nail-patella syndrome (NPS) or nail-patella-like renal disease (NPLRD) with only renal manifestations. CASE PRESENTATION: The proband was a 13-year-old female who was diagnosed with nephrotic syndrome at the age of 6. Then she began intermittent hormone and drug therapy. When she was 13 years old, she was admitted to our hospital due to sudden chest tightness, which progressed to end-stage kidney disease (ESRD), requiring kidney replacement therapy. Whole-Exome Sequencing (WES) results suggest the presence of LMX1B gene mutation, c.737G > T, p.Arg246Leu. Tracing her family history, we found that her father, grandmother, uncle and 2 cousins all had hematuria, or proteinuria. In addition to the grandmother, a total of 9 members of the family performed WES. The members with kidney involved all carry the mutated gene. Healthy members did not have the mutated gene. It is characterized by co-segregation of genotype and phenotype. We followed the family for 9 year, the father developed ESRD at the age of 50 and started hemodialysis treatment. The rest patients had normal renal function. No extra-renal manifestations associated with NPS were found in any member of the family. CONCLUSIONS: This study has successfully identified missense mutation, c.737G > T (p.Arg246Leu) in the homeodomain, which appears to be responsible for isolated nephropathy in the studied family. The arginine to leucine change at codon 246 likely disrupts the DNA-binding homeodomain of LMX1B. Previous research has documented 2 types of mutations at codon R246, namely R246Q and R246P, which are known to cause NPLRD. The newly discovered mutation, R246L, is likely to be another novel mutation associated with NPLRD, thus expanding the range of mutations at the crucial renal-critical codon 246 that contribute to the development of NPLRD. Furthermore, our findings suggest that any missense mutation occurring at the 246th amino acid position within the homeodomain of the LMX1B gene has the potential to lead to NPLRD.


Assuntos
Falência Renal Crônica , Síndrome da Unha-Patela , Nefrite Hereditária , Humanos , Feminino , Adolescente , Fatores de Transcrição/genética , Proteínas com Homeodomínio LIM/genética , Nefrite Hereditária/genética , Mutação , Falência Renal Crônica/genética , Falência Renal Crônica/terapia , Códon , China , Proteínas de Homeodomínio/genética
8.
Kidney Int ; 105(5): 1049-1057, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401706

RESUMO

Focal segmental glomerulosclerosis (FSGS) lesions have been linked to variants in COL4A3/A4/A5 genes, which are also mutated in Alport syndrome. Although it could be useful for diagnosis, quantitative evaluation of glomerular basement membrane (GBM) type IV collagen (colIV) networks is not widely used to assess these patients. To do so, we developed immunofluorescence imaging for collagen α5(IV) and α1/2(IV) on kidney paraffin sections with Airyscan confocal microscopy that clearly distinguishes GBM collagen α3α4α5(IV) and α1α1α2(IV) as two distinct layers, allowing quantitative assessment of both colIV networks. The ratios of collagen α5(IV):α1/2(IV) mean fluorescence intensities (α5:α1/2 intensity ratios) and thicknesses (α5:α1/2 thickness ratios) were calculated to represent the levels of collagen α3α4α5(IV) relative to α1α1α2(IV). The α5:α1/2 intensity and thickness ratios were comparable across all 11 control samples, while both ratios were significantly and markedly decreased in all patients with pathogenic or likely pathogenic Alport COL4A variants, supporting validity of this approach. Thus, with further validation of this technique, quantitative measurement of GBM colIV subtype abundance by immunofluorescence, may potentially serve to identify the subgroup of patients with FSGS lesions likely to harbor pathogenic COL4A variants who could benefit from genetic testing.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrite Hereditária , Humanos , Membrana Basal Glomerular/patologia , Colágeno Tipo IV/genética , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/patologia , Parafina , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Membrana Basal/patologia
9.
Kidney Int ; 105(5): 1088-1099, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38382843

RESUMO

Individualized pre-pregnancy counseling and antenatal care for women with chronic kidney disease (CKD) require disease-specific data. Here, we investigated pregnancy outcomes and long-term kidney function in women with COL4A3-5 related disease (Alport Syndrome, (AS)) in a large multicenter cohort. The ALPART-network (mAternaL and fetal PregnAncy outcomes of women with AlpoRT syndrome), an international collaboration of 17 centers, retrospectively investigated COL4A3-5 related disease pregnancies after the 20th week. Outcomes were stratified per inheritance pattern (X-Linked AS (XLAS)), Autosomal Dominant AS (ADAS), or Autosomal Recessive AS (ARAS)). The influence of pregnancy on estimated glomerular filtration rate (eGFR)-slope was assessed in 192 pregnancies encompassing 116 women (121 with XLAS, 47 with ADAS, and 12 with ARAS). Median eGFR pre-pregnancy was over 90ml/min/1.73m2. Neonatal outcomes were favorable: 100% live births, median gestational age 39.0 weeks and mean birth weight 3135 grams. Gestational hypertension occurred during 23% of pregnancies (reference: 'general' CKD G1-G2 pregnancies incidence is 4-20%) and preeclampsia in 20%. The mean eGFR declined after pregnancy but remained within normal range (over 90ml/min/1.73m2). Pregnancy did not significantly affect eGFR-slope (pre-pregnancy ß=-1.030, post-pregnancy ß=-1.349). ARAS-pregnancies demonstrated less favorable outcomes (early preterm birth incidence 3/11 (27%)). ARAS was a significant independent predictor for lower birth weight and shorter duration of pregnancy, next to the classic predictors (pre-pregnancy kidney function, proteinuria, and chronic hypertension) though missing proteinuria values and the small ARAS-sample hindered analysis. This is the largest study to date on AS and pregnancy with reassuring results for mild AS, though inheritance patterns could be considered in counseling next to classic risk factors. Thus, our findings support personalized reproductive care and highlight the importance of investigating kidney disease-specific pregnancy outcomes.


Assuntos
Nefrite Hereditária , Complicações na Gravidez , Nascimento Prematuro , Insuficiência Renal Crônica , Feminino , Humanos , Gravidez , Recém-Nascido , Lactente , Resultado da Gravidez/epidemiologia , Nefrite Hereditária/genética , Peso ao Nascer , Estudos Retrospectivos , Nascimento Prematuro/etiologia , Complicações na Gravidez/epidemiologia , Complicações na Gravidez/genética , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , Proteinúria , Aconselhamento
10.
Artigo em Chinês | MEDLINE | ID: mdl-38297848

RESUMO

Objective:To investigate long-term auditory changes and characteristics of Alport syndrome(AS) patients with different degrees of renal injury. Methods:Retrospectively analyzing clinical data of patients diagnosed AS from January 2007 to September 2022, including renal pathology, genetic detection and hearing examination. A long-term follow-up focusing on hearing and renal function was conducted. Results:This study included 70 AS patients, of which 33(25 males, 8 females, aged 3.4-27.8 years) were followed up, resulting in a loss rate of 52.9%.The follow-up period ranged from 1.1to 15.8 years, with 16 patients followed-up for over 10 years. During the follow-up, 10 patients presenting with hearing abnormalities at the time of diagnosis of AS had progressive hearing loss, and 3 patients with new hearing abnormalities were followed up, which appeared at 5-6 years of disease course. All of which were sensorineural deafness. While only 3 patients with hearing abnormalities among 13 patients received hearing aid intervention. Of these patients,7 developed end-stage renal disease(ESRD), predominantly males (6/7). The rate of long-term hearing loss was significantly different between ESRD group and non-ESRD group(P=0.013). There was no correlation between the progression of renal disease and long-term hearing level(P>0.05). kidney biopsies from 28 patients revealed varying degrees of podocyte lesion and uneven thickness of basement membrane. The severity of podocyte lesion was correlated with the rate of long-term hearing loss(P=0.048), and there was no correlation with the severity of hearing loss(P>0.05). Among 11 cases, theCOL4A5mutationwas most common (8 out of 11), but there was no significant correlation between the mutation type and hearing phenotype(P>0.05). Conclusion:AS patients exhibit progressive hearing loss with significant heterogeneity over the long-term.. THearing loss is more likely to occur 5-6 years into the disease course. Hearing abnormalities are closely related to renal disease status, kidney tissue pathology, and gene mutations, emphasizing the need for vigilant long-term hearing follow-up and early intervention.


Assuntos
Surdez , Perda Auditiva , Falência Renal Crônica , Nefrite Hereditária , Masculino , Criança , Feminino , Humanos , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Estudos Retrospectivos , Rim , Perda Auditiva/genética , Falência Renal Crônica/genética , Falência Renal Crônica/patologia , Mutação
11.
Am J Pathol ; 194(5): 641-655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38309427

RESUMO

Alport syndrome is an inherited kidney disease, which can lead to glomerulosclerosis and fibrosis, as well as end-stage kidney disease in children and adults. Platelet-derived growth factor-D (PDGF-D) mediates glomerulosclerosis and interstitial fibrosis in various models of kidney disease, prompting investigation of its role in a murine model of Alport syndrome. In vitro, PDGF-D induced proliferation and profibrotic activation of conditionally immortalized human parietal epithelial cells. In Col4a3-/- mice, a model of Alport syndrome, PDGF-D mRNA and protein were significantly up-regulated compared with non-diseased wild-type mice. To analyze the therapeutic potential of PDGF-D inhibition, Col4a3-/- mice were treated with a PDGF-D neutralizing antibody. Surprisingly, PDGF-D antibody treatment had no effect on renal function, glomerulosclerosis, fibrosis, or other indices of kidney injury compared with control treatment with unspecific IgG. To characterize the role of PDGF-D in disease development, Col4a3-/- mice with a constitutive genetic deletion of Pdgfd were generated and analyzed. No difference in pathologic features or kidney function was observed in Col4a3-/-Pdgfd-/- mice compared with Col4a3-/-Pdgfd+/+ littermates, confirming the antibody treatment data. Mechanistically, lack of proteolytic PDGF-D activation in Col4a3-/- mice might explain the lack of effects in vivo. In conclusion, despite its established role in kidney fibrosis, PDGF-D, without further activation, does not mediate the development and progression of Alport syndrome in mice.


Assuntos
Nefrite Hereditária , Animais , Camundongos , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Fibrose , Rim/patologia , Camundongos Knockout , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Nefrite Hereditária/patologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Fator de Crescimento Derivado de Plaquetas/uso terapêutico
12.
Am J Physiol Renal Physiol ; 326(5): F751-F767, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38385175

RESUMO

Conduit arterial disease in chronic kidney disease (CKD) is an important cause of cardiac complications. Cardiac function in CKD has not been studied in the absence of arterial disease. In an Alport syndrome model bred not to have conduit arterial disease, mice at 225 days of life (dol) had CKD equivalent to humans with CKD stage 4-5. Parathyroid hormone (PTH) and FGF23 levels were one log order elevated, circulating sclerostin was elevated, and renal activin A was strongly induced. Aortic Ca levels were not increased, and vascular smooth muscle cell (VSMC) transdifferentiation was absent. The CKD mice were not hypertensive, and cardiac hypertrophy was absent. Freshly excised cardiac tissue respirometry (Oroboros) showed that ADP-stimulated O2 flux was diminished from 52 to 22 pmol/mg (P = 0.022). RNA-Seq of cardiac tissue from CKD mice revealed significantly decreased levels of cardiac mitochondrial oxidative phosphorylation genes. To examine the effect of activin A signaling, some Alport mice were treated with a monoclonal Ab to activin A or an isotype-matched IgG beginning at 75 days of life until euthanasia. Treatment with the activin A antibody (Ab) did not affect cardiac oxidative phosphorylation. However, the activin A antibody was active in the skeleton, disrupting the effect of CKD to stimulate osteoclast number, eroded surfaces, and the stimulation of osteoclast-driven remodeling. The data reported here show that cardiac mitochondrial respiration is impaired in CKD in the absence of conduit arterial disease. This is the first report of the direct effect of CKD on cardiac respiration.NEW & NOTEWORTHY Heart disease is an important morbidity of chronic kidney disease (CKD). Hypertension, vascular stiffness, and vascular calcification all contribute to cardiac pathophysiology. However, cardiac function in CKD devoid of vascular disease has not been studied. Here, in an animal model of human CKD without conduit arterial disease, we analyze cardiac respiration and discover that CKD directly impairs cardiac mitochondrial function by decreasing oxidative phosphorylation. Protection of cardiac oxidative phosphorylation may be a therapeutic target in CKD.


Assuntos
Cardiomegalia , Fator de Crescimento de Fibroblastos 23 , Miocárdio , Insuficiência Renal Crônica , Animais , Fator de Crescimento de Fibroblastos 23/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Modelos Animais de Doenças , Ativinas/metabolismo , Ativinas/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Camundongos , Masculino , Fosforilação Oxidativa , Nefrite Hereditária/metabolismo , Nefrite Hereditária/patologia , Nefrite Hereditária/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Hormônio Paratireóideo/metabolismo
13.
Mol Genet Genomic Med ; 12(2): e2395, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38400605

RESUMO

BACKGROUND: X-linked Alport syndrome (XLAS) is an inherited renal disease caused by rare variants of COL4A5 on chromosome Xq22. Many studies have indicated that single nucleotide variants (SNVs) in exons can disrupt normal splicing process of the pre-mRNA by altering various splicing regulatory signals. The male patients with XLAS have a strong genotype-phenotype correlation. Confirming the effect of variants on splicing can help to predict kidney prognosis. This study aimed to investigate whether single nucleotide substitutions, located within three bases at the 5' end of the exons or internal position of the exons in COL4A5 gene, cause aberrant splicing process. METHODS: We analyzed 401 SNVs previously presumed missense and nonsense variants in COL4A5 gene by bioinformatics programs and identified candidate variants that may affect the splicing of pre-mRNA via minigene assays. RESULTS: Our study indicated three of eight candidate variants induced complete or partial exon skipping. Variants c.2678G>C and c.2918G>A probably disturb classic splice sites leading to corresponding exon skipping. Variant c.3700C>T may disrupt splicing enhancer motifs accompanying with generation of splicing silencer sequences resulting in the skipping of exon 41. CONCLUSION: Our study revealed that two missense variants positioned the first nucleotides of the 5' end of COL4A5 exons and one internal exonic nonsense variant caused aberrant splicing. Importantly, this study emphasized the necessity of assessing the effects of SNVs at the mRNA level.


Assuntos
Nefrite Hereditária , Precursores de RNA , Humanos , Masculino , Mutação , Splicing de RNA , Éxons , Nefrite Hereditária/genética , Bioensaio , Nucleotídeos , Colágeno Tipo IV/genética
14.
Nefrologia (Engl Ed) ; 44(1): 69-76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38418364

RESUMO

BACKGROUND AND OBJECTIVE: Hereditary kidney diseases (HKD) are a frequent cause of chronic kidney disease, and their diagnosis has increased since the introduction of next generation sequencing (NGS). In 2018, the Multidisciplinary Unit for Hereditary Kidney Diseases of the Region of Murcia (UMERH-RM) was founded based on the genetic study of HKD. The objective of this study is to analyze the results obtained in the first 3 years of operation, and to analyze the clinical factors associated to a final genetic diagnosis. MATERIALS AND METHODS: All the patients studied with the HKD gene panel were included. The characteristics between those who obtained a final genetic diagnosis and those who did not were compared. RESULTS: A total of 360 patients were studied, detecting genetic variants in 164 not related patients (45.6%). 45 of these were variants of uncertain significance requiring a family co-segregation study, which was facilitated by the multidisciplinary unit. Overall, considering the results obtained with the NGS panel and the extended genomic studies, a final diagnostic yield of HRD of 33.3% (120/360) was achieved, and including incidental findings 35.6% (128/360). Two hundred and twenty-three patients with suspected Alport syndrome were studied. Diagnosis was confirmed in 28.5% (COL4A4 most frequent gene), more frequently women with an obvious compatible family history. They also had frequently microhematuria, although 5 patients without microhematuria confirmed the diagnosis. There were no differences in age, proteinuria, renal function, hearing loss, or ophthalmologic abnormalities. The most frequent finding in the renal biopsy was mesangial proliferation. We estimate that 39 patients avoided renal biopsy. A total of 101 patients with suspected PKD were also studied, 49.5% had a conclusive genetic result (most frequent gene PKD1), more frequently women, with larger kidney sizes (although 9 patients with normal kidney size confirmed diagnosis). Again, the most predictive characteristic of genetic outcome was family history. CONCLUSIONS: The implementation of an NGS panel for HKD, together with the multidisciplinary approach to cases, has improved the diagnostic performance of HKD. In our sample, autosomal dominant Alport syndrome is of highest incidence. Ophthalmological and auditory examinations did not contribute to the diagnosis. We have seen a significant decrease in the indication of renal biopsies thanks to molecular diagnosis. The multidisciplinary approach, with the active participation of nephrologists, paediatricians, clinical and molecular geneticists, with insistence on adequate patient phenotyping and review of their family history, offers a better interpretation of genetic variants, allowing reclassification of the diagnosis of some nephropathies, thus improving their management and genetic advice.


Assuntos
Nefrite Hereditária , Humanos , Feminino , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Rim/patologia , Hematúria
15.
J Pathol ; 262(3): 296-309, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38129319

RESUMO

The standard of care for patients with Alport syndrome (AS) is angiotensin-converting enzyme (ACE) inhibitors. In autosomal recessive Alport (ARAS) mice, ACE inhibitors double lifespan. We previously showed that deletion of Itga1 in Alport mice [double-knockout (DKO) mice] increased lifespan by 50%. This effect seemed dependent on the prevention of laminin 211-mediated podocyte injury. Here, we treated DKO mice with vehicle or ramipril starting at 4 weeks of age. Proteinuria and glomerular filtration rates were measured at 5-week intervals. Glomeruli were analyzed for laminin 211 deposition in the glomerular basement membrane (GBM) and GBM ultrastructure was analyzed using transmission electron microscopy (TEM). RNA sequencing (RNA-seq) was performed on isolated glomeruli at all time points and the results were compared with cultured podocytes overlaid (or not) with recombinant laminin 211. Glomerular filtration rate declined in ramipril-treated DKO mice between 30 and 35 weeks. Proteinuria followed these same patterns with normalization of foot process architecture in ramipril-treated DKO mice. RNA-seq revealed a decline in the expression of Foxc2, nephrin (Nphs1), and podocin (Nphs2) mRNAs, which was delayed in the ramipril-treated DKO mice. GBM accumulation of laminin 211 was delayed in ramipril-treated DKO mice, likely due to a role for α1ß1 integrin in CDC42 activation in Alport mesangial cells, which is required for mesangial filopodial invasion of the subendothelial spaces of the glomerular capillary loops. Ramipril synergized with Itga1 knockout, tripling lifespan compared with untreated ARAS mice. © 2023 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Nefrite Hereditária , Podócitos , Humanos , Camundongos , Animais , Integrina alfa1/genética , Integrina alfa1/metabolismo , Ramipril/farmacologia , Ramipril/metabolismo , Longevidade , Membrana Basal Glomerular/metabolismo , Nefrite Hereditária/tratamento farmacológico , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Podócitos/metabolismo , Laminina/genética , Laminina/metabolismo , Camundongos Knockout , Proteinúria/tratamento farmacológico , Proteinúria/genética , Proteinúria/metabolismo , Análise de Sequência de RNA
16.
Medicine (Baltimore) ; 102(46): e36057, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37986374

RESUMO

RATIONALE: Autosomal recessive Alport syndrome (ARAS) is an hereditary heterogeneous disease that poses a serious risk to pregnant women. PATIENT CONCERNS: We reported 2 cases of pregnancy with progressive proteinuria. The case 1 was a 21-year-old woman with 24-h proteinuria increased from 2.03 to 11.72 g at 13 to 35 weeks of gestation, and the case 2 was a 28-year-old woman with 24-h proteinuria increased from 2.10 to 9.32 g at 8 to 36 weeks of gestation. In advanced stage of pregnancy, the fetal development was smaller than the gestational age. DIAGNOSES: Sanger sequencing showed that novel compound heterozygous mutations [c.1315 G>T (p.G439C) and c.4847 G>A (p.C1616Y)] of the collagen type IV alpha 3 chain (COL4A3) gene were found in the 2 cases. Renal puncture pathology confirmed the diagnosis of ARAS. INTERVENTIONS: The 2 cases were treated with albumin, compounded amino acids, calcium, vitamin D, and low molecular weight heparin in addition to conventional treatment during pregnancy. Pregnancy was terminated by cesarean section at 36 to 37 weeks of gestation. After delivery, the patients were treated with Losartan for anti-proteinuric therapy for 1 year. OUTCOMES: The neonatal weights and Apgar scores were normal. The patients recovered well and 24-h proteinuria decreased to pre-pregnancy level. LESSONS: When pregnant women present with a persistent increasing proteinuria, ARAS needs to be considered. Sanger sequencing is useful to assist in the diagnosis of ARAS. Multidisciplinary treatments from nephrologists and gynecologists are needed to ensure the safety of pregnancy and the fetus.


Assuntos
Nefrite Hereditária , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez , Adulto Jovem , Cesárea , Colágeno Tipo IV/genética , Rim/patologia , Mutação , Nefrite Hereditária/tratamento farmacológico , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Proteinúria/tratamento farmacológico , Proteinúria/genética , Proteinúria/patologia
17.
Genes (Basel) ; 14(10)2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895203

RESUMO

BACKGROUND: Alport syndrome is a hereditary disorder caused by pathogenic variants in the COL4A gene, which can be inherited in an autosomal recessive, dominant, or X-linked pattern. In the Bukharian Jewish population, no founder pathogenic variant has been reported in COL4A4. METHODS: The cohort included 38 patients from 22 Bukharian Jewish families with suspected Alport syndrome who were referred the nephrogenetics clinic between 2012 and 2022. The study collected demographic, clinical, and genetic data from electronic medical records, which were used to evaluate the molecular basis of the disease using Sanger sequencing, and next-generation sequencing. RESULTS: Molecular diagnosis was confirmed in 20/38 patients, with each patient having at least one of the three disease-causing COL4A4 variants detected: c.338GA (p.Gly1008Arg), and c.871-6T>C. In addition, two patients were obligate carriers. Overall, there were 17 heterozygotes, 2 compound heterozygotes, and 3 homozygotes. Each variant was detected in more than one unrelated family. All patients had hematuria with/without proteinuria at referral, and the youngest patient with proteinuria (age 5 years) was homozygous for the c.338G>A variant. End-stage renal disease was diagnosed in two patients at the age of 38 years, a compound heterozygote for c.338G>A and c.871-6T>C. Hearing deterioration was detected in three patients, the youngest aged 40 years, all of whom were heterozygous for c.338G>A. CONCLUSION: This study unveils three novel disease-causing variants, c.3022G>A, c.871-6T>C, and c.338G>A, in the COL4A4 gene that are recurrent among Jews of Bukharian ancestry, and cause Alport syndrome in both dominant and recessive autosomal inheritance patterns.


Assuntos
Nefrite Hereditária , Humanos , Nefrite Hereditária/genética , Judeus/genética , Colágeno Tipo IV/genética , Linhagem , Proteinúria
18.
Transpl Immunol ; 81: 101941, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37866673

RESUMO

BACKGROUND: Historically, due to the lack of distinct clinical symptoms, Alport syndrome, a hereditary kidney disease prevalent in children and a leading cause of kidney failure, has often been misdiagnosed as other kidney conditions. CASE DESCRIPTION: This article presents a comprehensive review and analysis of clinical data concerning a child diagnosed with Alport syndrome, where nephrotic syndrome served as the primary manifestation. The male child in this case exhibited symptoms starting at the age of 6, initially diagnosed as nephrotic syndrome. Consequently, oral steroid medication was administered, proving ineffective. Due to persistent proteinuria and microscopic hematuria, a renal biopsy was performed. Immunofluorescence staining revealed no abnormal expression of the α3, α4, and α5 chains of type IV collagen. Notably, electron microscopy revealed the basement membrane to be partially torn and arachnoid. Genetic testing indicated a hemizygous COL4A5 acceptor-splice-site mutation c.4707-1(IVS50)G > A, inherited from his mother. CONCLUSION: This specific mutated locus, being the first of its kind reported, adds valuable information to the existing gene mutation spectrum of Alport syndrome. Consequently, it emphasizes the importance for clinicians to deepen their understanding of rare kidney diseases, contributing to enhanced diagnostic accuracy and improved patient care.


Assuntos
Nefrite Hereditária , Síndrome Nefrótica , Criança , Masculino , Humanos , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/tratamento farmacológico , Nefrite Hereditária/genética , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/metabolismo , Rim/patologia , Membrana Basal/metabolismo , Membrana Basal/patologia , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo
19.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(11): 1356-1359, 2023 Nov 10.
Artigo em Chinês | MEDLINE | ID: mdl-37906141

RESUMO

OBJECTIVE: To analysis variants of COL4A5 gene in two Chinese pedigrees affected with Alport syndrome (AS) and provide prenatal diagnosis for them. METHODS: Two unrelated ethnic Han Chinese pedigrees who had visited the First Affiliated Hospital of Zhengzhou University respectively in September 2018 and January 2020 were selected as the study subjects. Clinical data were collected, and genomic DNA was extracted from peripheral venous blood and amniotic fluid samples for genetic testing. Following next generation sequencing, candidate variants of the COL4A5 gene were verified by Sanger sequencing and bioinformatic analysis. The gender of the fetuses was determined by the presence of sex-determining region on Y (SRY). RESULTS: Genetic testing revealed that the proband and a fetus from pedigree 1 had both harbored a c.2723G>A (p.Gly908Glu) variant in exon 32 of the COL4A5 gene, whilst the proband and a fetus from pedigree 2 had both harbored a c.3817G>A (p.Gly1273Asp) variant in exon 44 of the COL4A5 gene. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), both variants were classified as likely pathogenic (PP2+PM2_Supporting). Following exclusion of maternal contamination, PCR amplification of the SRY region indicated that both fetuses were males. CONCLUSION: The c.2723G>A (p.Gly908Glu) and c.3817G>A (p.Gly1273Asp) variants of the COL4A5 gene probably underlay the AS in the two pedigrees. Detection of the SRY region can reliably identify the fetal sex, which is conducive to the prenatal diagnosis. Above results have also enriched the mutational spectrum of the COL4A5 gene and provided a reference for correlating the genotype and phenotype of the AS.


Assuntos
Nefrite Hereditária , Feminino , Humanos , Masculino , Gravidez , Colágeno Tipo IV/genética , População do Leste Asiático , Testes Genéticos , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Linhagem , Diagnóstico Pré-Natal
20.
BMC Nephrol ; 24(1): 300, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828432

RESUMO

BACKGROUND: Alport syndrome (AS) is caused by mutations in type IV collagen genes that typically target and compromise the integrity of basement membranes in kidney, ocular, and sensorineural cochlear tissues. Type IV and V collagens are also integral components of arterial walls, and whereas collagenopathies including AS are implicated in aortic disease, the incidence of aortic aneurysm in AS is unknown probably because of underreporting. Consequently, AS is not presently considered an independent risk factor for aortic aneurysm and more detailed case studies including histological evidence of basement membrane abnormalities are needed to determine such a possible linkage. CASE PRESENTATION: Here, we present unique histopathological findings of an ascending aortic aneurysm collected at the time of surgery from an AS patient wherein hypertension was the only other known risk factor. CONCLUSIONS: The studies reveal classical histological features of aortic aneurysm, including atheroma, lymphocytic infiltration, elastin disruption, and myxoid degeneration with probable AS association.


Assuntos
Aneurisma da Aorta Ascendente , Aneurisma Aórtico , Nefrite Hereditária , Humanos , Nefrite Hereditária/complicações , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Rim/patologia , Colágeno Tipo IV/genética , Aneurisma Aórtico/diagnóstico por imagem , Aneurisma Aórtico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...